ABI OMICSS Guide 2021
  • Welcome
  • Week 1
    • Molecular Biology
      • Introduction to Biology
      • Macromolecules
      • DNA & RNA
      • Cell Division
    • Command-Line
      • Connecting to the Server
      • The Linux Command-Line For Beginners
      • The Bash Terminal
    • R Programming
      • Getting Started
      • The Basics
      • Data Types
    • Week 1 Exam
  • Week 2
    • Molecular Biology
      • DNA Proofreading And Repair
      • Telomeres and Telomerase
      • Genes
      • The One Gene, One Enzyme Hypothesis
      • Transcription
      • Translation
    • R Programming
      • Data Types (continuation)
      • Reading Data
      • Subsetting
      • Control Structures
      • Functions
      • Scoping Rules
    • Week 2 Exam
  • Week 3
    • Molecular Biology
      • tRNA and Ribosomes
      • Stages of Translation & Protein Targeting
      • Heredity
      • Probabilities In Genetics
    • R Programming
      • Loop Functions
      • Base Graphics
    • Statistics and R
      • The Basics
    • Week 3 Exam
  • Week 4
    • Molecular Biology
      • Interesting Cases of Genes
      • The Chromosomal Basis of Inheritance
      • Variation in Species
      • Phenotype plasticity
    • R Programming
      • Practice 2
      • Practice 3
    • Statistics and R
      • Random Variables and Probability Distributions
      • Central Limit Theorem
    • Week 4 Exam
  • Week 5
    • Statistics and R
      • Confidence Interval
      • Introduction to Inference
      • t-distribution and Comparing Means
      • Linear Models
    • Experimental Techniques
      • Polymerase Chain Reaction (PCR)
      • Gel Electrophoresis
      • Sanger Sequencing
      • NGS Sequencing
    • Week 5 Exam
  • Week 6
    • Statistics and R
      • Power
      • ANOVA
      • Covariance and Correlation
    • NGS
      • Basic Unix Commands
      • Sequences and Genomic Features
      • FastQC
      • Practice Exercises
    • Week 6 Exam
  • Week 7
    • Statistics and R
      • Monte Carlo Simulation
      • Exploratory Data Analysis
      • Linear Regression
    • NGS
      • BEDtools
      • Alignment and Sequence Variation
      • Integrated Genomics Viewer
    • Week 7 Exam
  • Week 8
    • NGS
      • Variant Calling With GATK
      • Practice 1
    • Week 8 Exam
  • Module Syllabi
  • Additional Resources
  • Conclusion
Powered by GitBook
On this page

Was this helpful?

  1. Week 6

Statistics and R

We pick up where we left off in week 6 of statistics. This module takes an estimated 2 hours to complete.

What Are the Learning Outcomes of This Week?

By the end of week 6, you should:

  • Have mastered the concepts of inference and power

  • Be familiar with the concept of ANOVA

  • Have solid knowledge of Pearson's correlation and covariance

  • Have a good understanding of linear regression

PreviousWeek 5 ExamNextPower

Last updated 3 years ago

Was this helpful?